Courses--> Mechanical Engineering --> Finite Element Method (Video)

Mechanical Engineering

Finite Element Method  (Video Course)

IIT Kanpur

Faculty Coordinators


Prof. C. S. Upadhayay

Department of Aerospace Engineering
Indian Institute of Technology Kanpur
Kanpur - 208 016,
Email :
Telephone : (91-512) 2597 936 (Office)
                  (91-512)               (Residence)

Detailed Syllabus


Module 1              (3 hrs)
Objective of the Course, Basic Steps in FEM Formulation, General Applicability of the Method; Variational Functional, Ritz Method.

Module 2
              (4 hrs)
Variational FEM : Derivation of Elemental Equations, Assembly, Imposition of Boundary Conditions, Solution of the Equations.

Module 3
              (3 hrs)
1 -D Elements, Basis Functions and Shape Functions, Convergence Criteria, h and p Approximations.

Module 4
             (3 hrs)
Natural Coordinates, Numerical Integration, Gauss Elimination based Solvers.

Module 5
              (3 hrs)
Computer implementation: Pre-processor, Processor, Post-processor.

Module 6
             (4 hr)
Alternate Formulation: Weighted Residual Method, Galerkin Method;
Problems with C1 Continuity: Beam Bending, Connectivity and Assembly of C1 Continuity Elements.

Module 7
              (5 hrs)
Variational Functional; 2-D Elements (Triangles and Quadrilaterals) and Shape Functions.

Module 8
              (3 hrs)
Natural Coordinates, Numerical Integration, Elemental Equations, .Connectivity and Assembly, Imposition of Boundary Conditions.

Module 9
              (4 hrs)
Axisymmetric (Heat Conduction) Problem, Plane Strain and Plane Stress Solid Mechanics Problems.

Module 10
              (3 hrs)
Sub-parametric, Iso-parametric and Super-parametric Elements; Elements with C1 Continuity.

Module 11 
             (3 hrs)
Free Vibration Problems, Formulation of Eigen Value Problem, FEM Formulation.

Module 12
              (3 hrs)
Time-dependent Problems, Combination of Galerkin FEM and FDM (Finite Difference Method), Convergence and Stability of FD Scheme.

Module 13 
             (2 hrs)
Problems with Material Non-linearity, Direct Solution Technique

Download Syllabus (PDF)














Top of this page

Other Departments: Core Sciences      Computer Science and Engineering    Electrical Engineering  
 Electronics and Communication Engineering
   Mechanical Engineering   Civil Engineering


Site Maintained by Web Studio IIT Madras. Contact Webmaster: